

Printed Pages: 7

TAS-302

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 9967

Roll No.

B. Tech.

(SEM. III) EXAMINATION, 2008-09 COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 3 Hours]

[Total Marks: 100

- Note: (1) Attempt all questions.
 - (2) All questions carry equal marks.
- Attempt any four of the following: 1

5×4

(a) Let $f(x) = x^{10}$ be computed for $0 \le x \le 10$.

If x^n approximate x correct to n significant decimal digits, then to how many significant digits $f(x^*)$ approximate f(x).

(b) Expand log(1+x) in a Taylor expansion about $x_0 = 1$ through terms of degree 4. Obtain bound on the truncation error when approximating log(1.2) using this expansion.

- (c) Find the root of the equation $2x = \cos x + 3$ correct to three decimal places by the iteration method.
- (d) Show that the equation

$$f(x) = \cos\left(\frac{\pi(x+1)}{8}\right) + 0.148x - 0.9062 = 0$$

has one root in the interval (-1,0) and one in

- (0,1). Calculate the negative root correct to 4 decimals by Newton-Raphson method.
- (e) Show that the following sequence has convergence of the second order with same $\lim \sqrt{a}$.

$$x_{n+1} = \frac{1}{2} x_n \left(1 + \frac{a}{x_n^2} \right)$$

(f) Find the root of the equation $x^3 - 2x - 5 = 0$ which lies between 2 and 3 by Muller's method.

2 Attempt any four of the following:

5×4

(a) Prove the following

$$\Delta = \frac{1}{2} \, \delta^2 + \delta \sqrt{1 + \frac{\delta^2}{4}}$$

(b) Evaluate from following table f(3.8) to three significant figures, using Gregery-Newton backward interpolation formula:

x:	0	1	2	3	4
f(x):	1.00	1.50	2.20	3.10	4.60

(c) From the following table, find the value of $e^{1.22}$ using Gauss's backward formula:

x:	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e^x :	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

(d) Using Stirling's formula, find f(1.42) from the following table:

x:	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
f(x):	0.84	0.89	0.93	0.96	0.99	1.01	1.02	1.03	1.04

(e) For the following table find f(x) as a polynomial in x using Newton's divided difference formula:

x:	-1	0	3	6	9
f(x):	3	-6	39	822	1611

(f) Using Lagrange's interpolation formula, find y(10) from the following table:

x:	5	6	9	11
<i>y</i> :	12	13	14	16

3 Attempt any two of the following:

10×2

(a) Derive the formula

$$y_0' = (y_{-2} - 8y_{-1} + 8y_1 - y_2)/12h$$

For numerical differentiation at mid-point of a table, and indicate the truncation error.

Derive Simpson's 3/8th rule on integration.

Hence, evaluate
$$\int_0^6 \frac{1}{1+x} dx$$
.

(c) Evaluate the value of the integral

$$\int_{.2}^{1.4} \left(\sin x - \log_e x + e^x \right) dx \text{ by}$$

Weddle's rule.

4 Attempt any two of the following:

10×2

- (a) If $\frac{dy}{dx} = x + y^2$, use Runge-Kutta method of fourth order to find an approximate value of y for x = 0.2, given that y = 1 when x = 0.
- (b) Apply predictor-corrector method, find y(2) if

$$y(x)$$
 is the solution of $\frac{dy}{dx} = \frac{1}{2}(x+y)$ given

$$y(0) = 2$$
, $y(.5) = 2.636$ $y(1) = 3.595$ and $y(1.5) = 4.968$.

Applying Euler's method to the equation

$$\frac{dy}{dx} = -y$$
, given $y(x_0) = y_0$, determine its

stability zone ?

Attempt any two of the following:

10×2

Fit a second degree parabola to the data, taking y as dependent variable:

x:	1929	1930	1931	1932	1933	1934	1935
<i>y</i> :	352	356	357	358	360	361	361

Find the multiple linear regression of X_1 on X_2 and X_3 from the data relating to three variables:

X_1 :	7	12	17	20
X_2 :	4	7	9	12
X_3 :	1	2	5	8

In a manufacturing process, the number of defectives items found in the inspection of 15 lots of 400 items each are given below:

Lot No.	No. of defective	Lot No.	No. of defective
1	2	9	18
2	5	10	8
3	0	11	6
4	14	12	0
5	3	13	3
6	0	14	0
7	1	15	6
8	0		

Determine the trial control limits for np chart and state whether the process is in control.

9967]