Printed Pages: 4

NCS-303

(Following Paper ID and Roll No. to be filled in your Answer Book)									
PAPER ID : 110 3	09								
Roll No.									

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15 COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 2 Hours] [Total Marks: 50

Note: Attempt all questions.

- 1 Attempt any four parts of following: $4\times3=12$
 - (a) Define 'Absolute error' and 'Relative error'. An approximate value of π is given by 3.1428571 and its true value is 3.1415926. Find absolute and relative errors.
 - (b) Find the rate of convergence of fixed point iteration method.
 - (c) The equation $f(x) = 3x^3 + 4x^2 + 4x + 1 = 0$ has a root in interval [-1, 0]. Find this root with an accuracy of 10^{-4} using iteration method.
 - (d) Use synthetic division and perform 2 iterations of the Birge Vieta method to find smallest positive root of the polynomial $P_3(x) = 2x^3 5x + 1 = 0$. Use $P_0 = 0.5$.

110309] 1 [Contd...

- (e) Perform two iteration of the linear iteration method followed by one iteration of the Aitken Δ^2 method to find the root of the equation $f(x) = x e^{-x} = 0$, $x_0 = 1$.
- (f) Write down the algorithm for Secant method.

2 Attempt any four parts of following:

4×3=12

(a) Calculate f(3) using Newton-divided difference formula from the following data:

X	0	1	2	4	5	6
f	1	14	15	5	6	19

(b) Find an interpolating polynomial to the following data:

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

(c) Prove the following

(a)
$$\delta = E^{1/2} + E^{-1/2}$$

(b)
$$\nabla = 1 - E^{-1}$$

(d) Express $1 - x^2 + 2x^4$ as sum of Chebyshev polynomials.

(e) Obtain the least squares straight line fit to the following data:

X	0.2	0.4	0.6	0.8	1
f(x)	0.447	0.632	0.775	0.894	1

(f) What do you mean by Gram-Schmidt Orthogonalization process?

3 Attempt any two parts of following:

 $2 \times 7 = 14$

(a) Find f'(1.3) and f'(1.3) from the following table :

X	1.0	1.2	1.4	1.6	1.8	2
f(x)	0.0	0.1280	0.5540	1.2960	2.4320	4.0

- (b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using
 - (a) Trapezoidal rule
 - (b) Simpson's 3/8 rule.
- (c) Evaluate the integral $\int_0^1 \frac{dx}{2x^2 + 2x + 3}$ using Lobatto and Radau 3-point formula.

4 Attempt **any two** parts of following:

 $2 \times 6 = 12$

- (a) Solve 10x 7y + 3z + 5u = 6, -6x + 8y z 4u = 5, 3x + y + 4y + 11u = 2 and 5x 9y 2z + 4u = 7 by Gauss Elimination method.
- (b) Using Runge Kutta method of 4^{th} order, find the numerical solution at x = 1.2 and x = 1.4 for the

differential equation
$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$$
, with y(1) = 3.

(c) Find y(2) if y(x) is the solution of $\frac{dy}{dx} = \frac{1}{2}(x+y)$ where y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968 using Milne's predictor-corrector formula.

110309]

4