

Printed Pages: 4

TAS302

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 9967 Roll No.

B. Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 3 Hours! Total Marks: 100

Note: (1) Attempt all questions.

(2) All questions carry equal marks.

- Attempt any four parts of the following: 1
 - (a) Discuss two important computer arithmetic systems. Illustrate with examples that associatiative laws of floating point arithmetic do not hold in numerical computation.

(b) Derive the series:
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Compute the number of terms required to estimate $\cos(\pi/4)$ so that the result is correct to atleast two significant digits.

In a triangle \triangle ABC, a = 6 cm, c = 15 cm, (c) $\angle B = 90^{\circ}$. Write a program in 'C' to find the absolute error in the computed value of A, if possible errors in a and c are 1/5% and 1/7% respectively.

- Develop an iteration formula to find a real root of the equation : $x \sin x + \cos x = 0$. Find it in the vicinity of $x_0 = \pi$.
- Use the iteration method to find a real root of the equation: $3x - \sqrt{1 + \sin x} = 0$ correct to five decimal places.
- Use Muller's method to obtain a root of the equation: (f) $\cos x - x e^x = 0$ in the interval (0, 1).

Attempt any four parts of the following

- Prove: $\Delta \nabla = -\Delta \nabla$
- Estimate the missing term in the table :

Х	0	l	2	3	4
f(x)	1	3	9	?	81

Apply Stirling's formula to find a polynomial (c) of degree three which takes the following values of x, y:

X	2	4	6	8	10
y	-2	I	3	8	20

- Write an algorithm of any central difference (d) interpolation formula.
- Apply Langrange's formula to find a cubic polynomial (e) which approximates the data:

X	-2	-1	2	3
v(x)	-12	-8	3	4

- A function f(x) satisfies the conditions : f(0) = 1, f'(0) = 1, f(1) = 0, f'(1) = 0. Use Hermite interpolation to approximate f(x) by a polynomial. Also evaluate the maximum value of f(x) in [0, 1].
- Attempt any two parts of the following: 3
 - State the importance of numerical differentiation. Find f'(0.6) and f''(0.6) from the following table:

X	0.4	0.5	0.6	0.7	0,8
f(x)	1,5836	1.7974	2.0442	2.3275	2.6510

- State the need and scope of numerical integration Use Simpson's rule to estimate the integral. $\int_{0}^{2} e^{x^{2}} dx$ with a stepsize 0.5.
- (c) The area A inside the closed curve. $y^2 + x^2 = \cos x$ is given by $A = 4 \int_{0}^{6} (\cos x = x^2)^{1/2} dx$ where α is the positive root of the equation $\cos x = x^2$. Compute the area with an absolute error less than 0.05.
- Attempt any two parts of the following :

JJ-9967]

(a) Apply Runge-Kutta fourth order method to find y(0.1), y(0.2) and y(0.3) for the initial value problem. $\frac{dy}{dx} = xy + y^2$, y(0) = 1. Also, find y(0.4)using Adam's method

- (b) Solve the initial value problem: $y' = x + \sin(\pi y)$; y(1) = 0, $1 \le x \le 2$ by Milne's predictor-corrector method.
- (c) Discuss the stability of Euler's method applied to the initial value problem. $y' = \lambda y$, $y(x_0) = y_0$.

5 Attempt any two parts of the following:

(a) State various methods for curve-fitting. Obtain the cubic splines approximation for the function given by the following table:

X	0	1	2	3
f(x)	1	2	5	11

with the end conditions $M_0 = 0 = M_3$.

- (b) State objectives of control charts. A drilling machine bores holes with a mean diameter of 0.5230 cm and a standard deviation of 0.0032 cm. Calculate the 2-sigma and 3-sigma upper and lower control limits for means of sample of 4.
- (c) Define lines of regression. Find the lines of regression for the given data:

	X	50	100	150	200	250	300	350
•	y	30	65	90	130	150	190	200

Also find the coefficient of correlation for the above data